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Abstract

Background: The only available predictive models for the outcome of breast cancer patients in New Zealand (NZ)
are based on data in other countries. We aimed to develop and validate a predictive model using NZ data for this
population, and compare its performance to a widely used overseas model, the Nottingham Prognostic Index (NPI).

Methods: We developed a model to predict 10-year breast cancer-specific survival, using data collected
prospectively in the largest population-based regional breast cancer registry in NZ (Auckland, 9182 patients), and
assessed its performance in this data set (internal validation) and in an independent NZ population-based series of
2625 patients in Waikato (external validation). The data included all women with primary invasive breast cancer
diagnosed from 1 June 2000 to 30 June 2014, with follow up to death or Dec 31, 2014. We used multivariate Cox
proportional hazards regression to assess predictors and to calculate predicted 10-year breast cancer mortality, and
therefore survival, probability for each patient. We assessed observed survival by the Kaplan Meier method. We
assessed discrimination by the C statistic, and calibration by comparing predicted and observed survival rates for
patients in 10 groups ordered by predicted 10-year survival. We compared this NZ model with the Nottingham
Prognostic Index (NPI) in this validation data set.

Results: Discrimination was good: C statistics were 0.84 for internal validity and 0.83 for an independent external
validity. For calibration, for both internal and external validity the predicted 10-year survival probabilities in all
groups of patients, ordered by predicted survival, were within the 95% confidence intervals (CI) of the observed
Kaplan-Meier survival probabilities. The NZ model showed good discrimination even within the prognostic groups
defined by the NPI.

Conclusions: These results for the New Zealand model show good internal and external validity, transportability,
and potential clinical value of the model, and its clear superiority over the NPI. Further research is needed to assess
other potential predictors, to assess the model’s performance in specific subgroups of patients, and to compare it
to other models, which have been developed in other countries and have not yet been tested in NZ.
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Background
Currently clinicians in New Zealand (NZ) estimate a
woman’s likely mortality or survival after a diagnosis of
breast cancer (her prognosis) based on experience and
clinical judgement. They may use some of the statistical
models developed in other countries, such as the Not-
tingham Prognostic Index (NPI) [1]. A recent review of
published data up to July 2012 found 996 articles, from
which six prognostic models were identified based on
clinical and pathological features [2]. These models were
the NPI, (the earliest, published in 1982) [1], Adjuvant!
[3], BC Nomogram [4], Options [5], Predict (and Predict
+) [6–8], and CancerMath [9]. Validation studies are
limited. All these models were developed in European or
United States populations, and the few validation studies
in other populations show less accurate prediction [10–
12]. The only published validation of these models in
NZ is a small study involving one of the current authors
[13], and no work in Maori or Pacific populations has
been done. The models are less accurate in younger and
in older patients, e.g., under 40 years and over 75 years
[14, 15]. These models use accepted clinical and patho-
logical indicators, such as tumour size, nodal involve-
ment, and receptor status. In addition to these factors,
studies in NZ show that there are significant differences
in breast cancer outcomes by social deprivation, rural
residence, comorbidity, type of health care [16–18].
There are important differences by ethnicity, with Maori
and Pacific women being at greater risks of death and
recurrence than European NZ women, and these ethnic
differences are complex and related to both clinic-patho-
logical and demographic factors [16, 18–20]. Thus we
aimed to develop and validate a model, based on NZ pa-
tient experience, to predict breast cancer outcomes. If
such a model were shown to have acceptable accuracy, it
would help clinicians as well as patients and their fam-
ilies, and would facilitate patient-doctor communication
and clinical decision making. In this paper, we present a
model, the New Zealand Model (NZM), developed to re-
liably categorise NZ patients into groups by their prob-
ability of breast cancer-specific survival within 10 years
of an initial breast cancer diagnosis, and compare it to
the NPI.

Methods
Patients and data
We used the data collected prospectively through the
two largest and longest-established population-based re-
gional breast cancer registries in NZ, in the Auckland
and Waikato regions. These two regional registries are
linked to include over 40% of all patients with breast
cancer in NZ, and are representative of NZ women in
terms of socioeconomic, demographic and ethnic back-
ground [16, 21]. The registries are linked to national

mortality data and to the legally-mandated national can-
cer registry [22] and to other hospital discharge data to
assess co-morbidity [22]; comparisons show that the
registries are very complete (over 95%) [22]. Mortality
and recurrences were documented from regular hospital
follow-up, or for patients discharged from regular hos-
pital follow up, from information provided by primary
care and private practice physicians, updated annually or
more frequently.
The data used are for all women diagnosed with a first

primary invasive breast cancer between 1 January 2000
and 30 June 2014, followed up to death or to 31 Dec
2014. Data were missing or incomplete for up to 5% of
several items, and 10% for numbers of involved nodes,
so we used complete case analysis rather than imput-
ation techniques. There were 10,586 such women in the
Auckland registry, of whom 9182 had complete data;
their data were used to develop the prediction model
and assess its internal validity. Data from the Waikato
registry, on 3071 total women and 2625 with complete
data, were used to assess the model’s external validity.

Predictors of breast cancer mortality
Predictors of breast cancer mortality (and therefore of
disease specific survival) were selected based on their ac-
cepted clinical importance, and then their empirical per-
formance as predictors of 10-year breast cancer
mortality [18, 23, 24]. The predictors considered were
age at diagnosis, ethnicity, tumour size, number of posi-
tive lymph nodes, tumour grade, presence of metastasis
at diagnosis (Stage 4), estrogen (ER) and progesterone
(PR) receptor status, human epidermal growth factor re-
ceptor2 (HER2) status, histological type of tumour, and
lymphovascular invasion (LVI). Menopausal status was
not retained as it is strongly linked to age. We assessed
factors as both continuous and categorical variables, but
used categories in the final model. Patient ethnicity was
identified from the breast cancer registries or where not
available, from the national cancer registry or mortality
data following NZ Ministry of Health ethnicity data pro-
tocols [25]. Ethnicity was categorized into NZ European,
Māori, Pacific, and Other. Cancer stage at diagnosis was
defined according to the Tumour, Node, and Metastasis
(TNM) system [26]. Invasive tumour grade was defined
according to the Elston and Ellis modified Scarff-Bloom-
Richardson breast cancer grading system [27]. Estrogen
(ER) and progesterone (PR) receptor status was based
on the results of immunohistochemistry tests and classi-
fied as positive with 1% or more receptor positive cells
[28], and grouped as both ER and PR positive, both
negative, and either positive/negative or negative/posi-
tive status. HER-2 status was based on a Fluorescent
In-Situ Hybridization (FISH) test or when this was not
available, on immunohistochemistry [29], and cate
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gorised as positive, negative/equivocal, or not tested.
HER2 assessment was introduced only in 2006.

Statistical methods
We performed Cox multivariate proportional hazards re-
gression analysis. The outcome variable was defined as
time from diagnosis until death due to breast cancer,
with censoring at date of death from other causes, or 31
Dec 2014. Analyses were performed with SAS version
IC.11 [30] and R version 3.2.5 [31].
The New Zealand model (NZM) was built using the

Auckland data base. Various models were developed
using continuous or categorical variables, with an im-
provement in goodness-of-fit assessed by a reduction in
the Akaike Information Criterion (AIC) [32]. The
models fit a mortality function, S(t) as the probability of
mortality for time t, dependent on S0(t), the baseline
mortality probability for time t, and Xβ, the linear com-
bination of predictors of breast cancer mortality [32].
We obtained the estimated 10-year mortality probability
at baseline, by setting the predictors to their reference
levels and fitting the Cox multivariate regression. Then
we used the mortality function [32], and computed
10-year mortality for each patient in the Auckland data-
base. We tested the proportional hazards assumption
using graphical log-log survival plots and the method of
weighted residuals [33], and we tested for goodness-of-fit
using the procedure of May and Hosmer [34].
We fitted a model with continuous variables of age,

tumour size, and number of positive lymph nodes, and
categorical variables of ethnicity, tumour stage, tumour
grade, ER and PR receptors, HER2 status, histological
type of tumour, and LVI. Then we fitted the model with
categorical variables of all the predictors, and found that
the fit improved, omitting LVI which was no longer sig-
nificant (p > 0.05). Graphical representation of the model
was done with a regression nomogram, enhanced with
distribution of covariates shown by scaled-to-frequency
boxes [35] and produced with R function regplot [36].
We assessed internal validity using the Auckland data-

base. Internal validity was assessed with bootstrapping
(200 replications). Bootstrapping samples were created by
drawing random samples with replacement from the
Auckland database. To assess discrimination, we used the
C statistic [32]. The prediction model was fitted on each
bootstrap sample and tested on the original sample. To as-
sess calibration, we divided patients in the Auckland data-
base into ten groups, ordered by their predicted 10-year
breast cancer survival. We then compared for each group
the mean of the predicted 10-year breast cancer survival
with the observed 10-year breast cancer survival [32, 37]
calculated by the Kaplan-Meier method [38].
To assess external validity and transportability of the

model, we applied the Auckland-developed model to an

independent data set, the Waikato registry. External val-
idity of the model was assessed by bootstrapping (200
replications), using the Waikato database. For the Wai-
kato data, we assessed the C statistic, and compared pre-
dicted and observed 10-year breast cancer survival in
groups ordered by predicted survival. Since there were
few patients with predicted survival under 30%, we com-
bined patients with 10-year breast cancer survivals of 0–
30% in one group, leaving 8 groups.
There are no simple calculations of statistical power in

predictive models, but assessing external validity, a mini-
mum of 100 events has been recommended for mortality
analysis [39, 40]. Another study suggests a minimum of 10
events per predictor for proportional hazards regression
[41]. We estimated that in the smaller external validation
data registry there were 282 breast cancer specific deaths,
giving 31 events per predictor variable, which was
adequate.

Comparison with NPI
The NPI was calculated for patients in the Waikato data,
based on tumour size, pathological grade, and number of
positive nodes [42], which replaces nodal stage used ori-
ginally [1], as in other validation studies of the NPI [43,
44]. In keeping with the development of the NPI, only pa-
tients with stage 1–3 breast cancer, and tumour size>
0 cm were included [1]. Thus 46 patients with Stage IV tu-
mours and 2 with missing tumour grade were excluded,
so the comparison was done in 2579 patients. Following
NPI methods, we classified patients into three NPI prog-
nostic groups, defined as good (NPI < 3.4), moderate (3.4
to 5.4), and poor (NPI > 5.4) [45]. Within these subgroups,
subdivided by deciles of breast cancer-specific survival
predicted by the NZ model, we compared the predicted
and observed breast cancer-specific mortality. The mortal-
ity probability predicted by the NZ model in a subgroup
was the mean of all the predicted probabilities generated
for all patients in that subgroup. The model was consid-
ered accurate if the predicted outcome was within the
95% confidence interval (95%CI) of the observed outcome.
An a priori alpha level of 0.05 was used. The difference of
means of breast cancer-specific mortality predicted by the
NZM in the three NPI groups was tested using one-way
ANOVA. Because of the unequal sample size between the
groups, a Tukey post hoc test was used for pairwise com-
parisons of means [46].

Results
For the 9182 eligible women in the Auckland database,
there were 864 breast cancer specific deaths over the
14-year time period; median follow up time was
67.6 months, and mean age of patients 56.9 years (Table 1).
Patients were predominantly Stage 1 (43%) and 2 (39%),
ER and PR positive (79 and 68%), HER-2 negative (69%),
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without lymphovascular invasion (73%), and with ductal
tumours (81%). Of the patients, 71% were of NZ European
ethnic group, with 8% Maori, 7% Pacific, and 14% other
(such as Asian countries).
The predictors in the final model are shown in Table 2.

The risk of breast cancer mortality within 10 years of

diagnosis increased significantly with age being over
70 years; higher tumour grade, larger tumour size,
greater number of positive lymph nodes, presence of
metastases at diagnosis, and with ER or PR negative tu-
mours. Mortality risk was reduced with HER2 status
positive, and histological types other than ductal or

Table 1 Features of patients included in the derivation data set (Auckland) and the independent validation data set (Waikato)

Derivation (Auckland) Validation (Waikato)

Total number of women with invasive cancer 10,586 3071

Number of complete cases 9182 2625

Number of deaths due to breast cancer 864 282

Median follow-up time (in months) 67.6 68.4

Age (mean in years) 56.9 59.3

Tumour grade

Well differentiated 2229 (24%) 624 (24%)

Moderately differentiated 4108 (45%) 1406 (53%)

Poorly differentiated 2845 (31%) 595 (23%)

Tumour size (mean in mm) 23.9 22.4

Mean number of positive lymph nodes removed 2.4 1.9

Stage of tumour

Stage 1 3990 (43%) 1071 (41%)

Stage 2 3602 (39%) 1117 (42%)

Stage 3 1432 (16%) 391 (15%)

Stage 4 (presence of metastasis) 158 (2%) 46 (2%)

ER status

Negative 1914 (21%) 410 (16%)

Positive 7268 (79%) 2215 (84%)

PR status

Negative 2919 (32%) 903 (34%)

Positive 6270 (68%) 1722 (66%)

HER2 status

Positive 1156 (13%) 378 (14%)

Negative/equivocal 6331 (69%) 1750 (67%)

Test not done 1695 (18%) 497 (19%)

Histological type of tumour

Ductal 7469 (81%) 2130 (81%)

Lobular 1072 (12%) 294 (11%)

Mixed 641 (7%) 201 (8%)

Lymphovascular invasion status

Negative 6730 (73%) 1939 (74%)

Positive 2452 (27%) 686 (26%)

Ethnicity

Maori 720 (8%) 388 (15%)

Pacific 682 (7%) 40 (2%)

European NZ 6527 (71%) 2131 (81%)

Other 1253 (14%) 66 (2%)

Data collection on HER2 status started in 2006
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lobular. NZ European, Maori, and Pacific women had
similar risks of mortality, but it was lower in patients in
the ‘Other’ ethnic group. When tested for proportional
hazards, most of the covariates met the criterion, but
overall, the global criterion was not met. Nevertheless
when the model was tested for goodness-of-fit [34] it
was found to be an adequate fit (p = 0.26).
Fitting the model to the Auckland data, assessing internal

validity, gave a C statistic of 0.84. Calibration is shown as
survival rather than mortality as that is usually used clinic-
ally, comparing predicted and observed 10-year disease spe-
cific survival (1-mortality). Figure 1 (and Additional file 1:
Table S1) show that for patients divided into ten groups,
based on predicted 10-year breast cancer survival of 0–9%,
10–19%, etc., the predicted survivals were within the 95%
confidence interval (CI) of observed survival for all groups.

To assess external validity, the model developed in the
Auckland data was applied to the independent data set,
2625 patients in the Waikato registry, with 282 deaths.
These patients were of similar mean age to those in Auck-
land, but with relatively more Maori, fewer Pacific, and
fewer of ‘other’ ethnic background (other than Maori, Pa-
cific, and European NZ). The distributions of clinico-
pathological factors was generally similar (Table 1). The
Auckland-derived model showed good discrimination in
this independent data set, with the C statistic being 0.83.
For calibration (Fig. 2), from 10 groups ordered by pre-
dicted survival, the three groups with the lowest survival
had few patients and were combined into a 0–30% group.
In all the eight groups, the predicted 10-year breast cancer
survivals were within the 95% confidence interval of the
observed 10-year breast cancer survival.

Table 2 Predictors of 10 year breast cancer mortality, Auckland data, 1 Jan 2000–31 Dec 2014

Risk factor Coefficient SE Hazard ratio (HR) 95% confidence limits p-value

Age under 40 0.085 0.122 1.09 0.86–1.38 0.486

Age (40–49) −0.003 0.097 1.00 0.83–1.21 0.976

Age (50–59) Ref

Age (60–69) −0.048 0.106 0.95 0.78–1.17 0.652

Age 70 & over 0.388 0.104 1.47 1.20–1.81 < 0.001

Tumour grade 1 Ref

Tumour grade 2 1.103 0.201 3.01 2.03–4.46 < 0.001

Tumour grade 3 1.504 0.206 4.50 3.01–6.73 < 0.001

Tumour size (0.1–19.9 mm) Ref

Tumour size (20–49.9 mm) 0.734 0.088 2.08 1.75–2.48 < 0.001

Tumour size (50 mm & more) 1.047 0.118 2.85 2.26–3.59 < 0.001

Positive lymph nodes (zero node) Ref

Positive lymph nodes (1–3 nodes) 0.783 0.094 2.19 1.82–2.63 < 0.001

Positive lymph nodes (4–9 nodes) 1.277 0.106 3.59 2.92–4.41 < 0.001

Positive lymph nodes (10 nodes & more) 1.722 0.111 5.60 4.50–6.96 < 0.001

Presence of metastases at diagnosis 1.603 0.120 4.97 3.93–6.28 < 0.001

No metastases at diagnosis Ref

Hormone receptor (1 negative & 1 positive) 0.636 0.096 1.89 1.56–2.28 < 0.001

Hormone receptor (double negative) 1.023 0.091 2.78 2.33–3.32 < 0.001

Hormone receptor (double positive) Ref

HER2 status (positive) −0.206 0.094 0.81 0.68–0.98 < 0.05

HER2 status (test not done) 0.164 0.088 1.18 0.99–1.40 0.061

HER2 status (negative/equivocal) Ref

Lobular histological type of cancer −0.046 0.121 0.95 0.75–1.21 0.702

Other histological type of cancer −0.576 0.206 0.56 0.38–0.84 < 0.01

Ductal histological type of cancer Ref

Maori 0.121 0.121 1.13 0.89–1.43 0.316

Pacific 0.007 0.118 1.01 0.80–1.27 0.949

Other −0.518 0.124 0.60 0.47–0.76 < 0.001

NZ European Ref
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Representation of the final model by a nomogram is
shown in Fig. 3. It is ranked showing the greatest contri-
bution to the regression from top downwards. The figure
also shows the total score, and its distribution, and
10-year (120 month) risk for a person with the indicated
set of predictors (2.5% estimated mortality risk).
The NPI was also applied to the independent data set,

dividing patients into three prognostic groups (Table 3).
While the mean predicted 10-year breast cancer survival
showed significant differences and a trend, from 96.1%
in ‘good’, 84.0% in ‘moderate’, to 57.8% in the ‘poor’ NPI
groups, the range of predictions for individual patients
was very large within each group. Within each of these
NPI subgroups, the NZ model shows good discrimin-
ation and predictive ability (Table 4). In all assessable
subgroups, the predicted breast cancer deaths were
within the 95% CI of the observed deaths. Within the
‘good’ prognosis NPI group, patients fall into the highest
8 of the 10 deciles by predicted survival using the NZ
model, with predicted survival rates ranging from 80 to
99%. Within the NPI ‘poor’ prognosis group, all but 3
patients are in the lowest 5 deciles, with predicted sur-
vival rates ranging from 42 to 88%.

Discussion
In this study we used demographic, clinical and patho-
logic factors to build a statistical model, the NZ model,

to estimate the probability of breast-cancer specific sur-
vival, or equivalently death, within 10 years of diagnosis
in women diagnosed with primary invasive breast cancer
in NZ. Our results confirmed that many factors affect a
woman’s prognosis; age at diagnosis, number of positive
lymph nodes, tumour size, tumour grade, presence of
metastases at diagnosis, histological type of tumour, ER
and PR receptors status, and HER2 status, all had signifi-
cant associations with breast cancer specific survival.
These factors have been used to predict breast cancer
outcomes by several studies [4, 6, 7, 9, 14, 17, 47].
In terms of validity and reliability, we found that our

predictive model performed well even in external valid-
ation on an independent data set. The C statistic was
0.83 for independent validation, compared to 0.84 for in-
ternal validation in the data from which it was derived,
showing good discrimination [37]. Calibration assess-
ment indicated good agreement between predicted and
observed 10-year breast cancer specific survival. In both
internal and external validation,predicted survivals were
within the 95% CI of observed survival probabilities in
all groups of patients. These are accepted approaches for
assessing discrimination and calibration of prediction
models of breast cancer outcomes [7, 14, 32, 37, 47].
Power was satisfactory: we had 282 breast cancer specific
deaths, and 31 events per predictor variable in the
smaller validation cohort, compared to recommendations

Fig. 1 Internal validity: 10-year breast cancer specific survival as predicted by the NZ model (horizontal axis) for 10 groups of patients in the
derivation data set (Auckland), grouped by predicted survival,compared to observed (Kaplan-Meier) survival and its 95% confidence limits (vertical
axis). Line of identity between predicted and observed survival shown
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of 100 events [39, 40], and 10 events per predictor variable
being adequate [41]. In future work, we will explore the
model’s performance in further groups of patients, and ul-
timately its validity at the individual patient level.
The optimum presentation of the results of any model

is a complex issue. In Fig. 3 the model is represented by
a regression nomogram; this way of representing risk
models is becoming common and has been recom-
mended [48]. The nomogram is enhanced with covariate
and total distributions. When active on a computer it
can present interactive calculations of individuals’ risks.
We see the applications of our prognostic model in
assisting informed decision-making by women with
breast cancer, their doctors and their carers. In further
research we will assess the most effective ways to use
the prognostic estimates. Many current models use
overly complex language in the presentation of results,
such that one study found that fewer than half of pa-
tients understood their prognosis after an oncologist’s
consultation [49]. Health literacy issues need to be con-
sidered as they contribute to health inequities [50, 51].
There are few comparisons of more than one risk pre-

diction model applied to the same independent patient
population. A recent study showed similar performance
of three models in patients recorded in an international
tissue bank, but these patients are not representative of

all incident patients [47]. A 2009 review [52] concluded
that the Nottingham index has been the most tested,
and only two other models had any published validation
in an independent population. Most validation studies
have used 1000 patients or fewer [2]. Several other
models are based on genetic profiles or novel biomolec-
ular factors, e.g. Oncotype DX [11, 53], but not also in-
cluding clinical and pathological factors.
In New Zealand, the patient’s ethnicity, with the three

largest groups being NZ European, Maori, and Pacific, is
of great general importance, so we kept ethnicity in the
prognostic model. Maori and Pacific women in NZ with
breast cancer have a worse prognosis and higher mortal-
ity [23, 54], however, the current results show that Maori
or Pacific ethnicity have no independent predictive value
on 10-year survival, once detailed clinical and patho-
logical factors are taken into account. This suggests the
ethnicity factors are mediated through these clinical and
pathological variables, and agrees with other detailed
analyses [16]. Thus, while at the population level differ-
ent approaches may be needed to overcome the dispar-
ities in outcomes of the different ethnic groups, at a
clinical level the assessment of prognosis in each women
may not be affected by her ethnic group. Thus, for ex-
ample, in women whose breast cancers have been
screen-detected, outcomes are equivalent in Maori and

Fig. 2 External validity: 10-year breast cancer specific survival as predicted by the NZ model (horizontal axis) for 8 groups of patients in the
validation data set (Waikato), grouped by predicted survival, using Auckland derived model, compared to observed (Kaplan-Meier) survival and its
95% confidence limits (vertical axis). Line of identity between predicted and observed survival shown

Elwood et al. BMC Cancer  (2018) 18:897 Page 7 of 12



non-Maori women in NZ [55]. However, there may be
ethnic differences in total mortality and in morbidity or
recurrence, so in further work we will assess whether
ethnic-specific prognostic models have any advantages.
Among the strengths of our modelling process is that

we have used large datasets for both development (over
9000 patients) and validation (over 2600 patients), and
both are population-based, including virtually all diag-
nosed patients [22]. These women have undergone rou-
tine clinical treatment and their survival experience will
reflect this and depend on their diagnosis date, from
2000 to 2014. As one comparison, the UK developed
‘Predict’ model was based on 5738 patients with

complete data diagnosed from 1999 to 2003 [8], but has
been shown to be applicable to several other popula-
tions. All predictive models based on actual patient ex-
perience will be limited by the assessment and
treatments available at the time they were diagnosed.
We developed our model based on the patients with

data available on all relevant factors, as in its application
to new patients all information is likely to be available as
it can be actively sought. Incomplete data were more
common in patients with more advanced disease; prob-
ably because documentation of features of the primary
disease such as tumour size or number of involved
nodes is less relevant clinically in these patients. It

Fig. 3 A nomogram of the fitted model, showing the relative contribution of variables to the model and also, by relative sizes of the boxes, the
distribution of each. The distribution of the total score is also shown and the dots show a particular person with 10-year mortality risk of 2.5%
(95% CI 1.3–3.6%)

Table 3 10-year survival predicted by the NZ model in three NPI prognostic groups

Good prognostic group Moderate prognostic group Poor prognostic group P-value

Number of patients (%) 1021 (39.6) 1123 (43.5) 435 (16.9)

Mean ± SD 96.12 ± 3.21 84.04 ± 10.35 57.79 ± 19.85 < 0.001

Range (Min-Max) 18.46 (81.15–99.61) 63.84 (34.65–98.49) 90.56 (3.45–94.01)

each pairwise comparison of means was significant (P < 0.001)
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implies that the prognostic model may be less accurate
in patients with metastatic disease. For patients with
some missing data, associations between known factors
and 10-year survival were generally similar to those of
patients with complete data.
We did not include treatment variables in our

models. The models are derived from data on the ex-
perience of unselected population-based series of
breast cancer patients. Their treatment will have been
guided by international best practice, summarised in
NZ clinical guidelines [56] and standards of service
[57]. Many patients may not receive the standard rec-
ommended treatment for various reasons including
patient choice, comorbidity, and barriers to access of
health care. In future work, we will explore effects of
treatment factors, both in regard to not receiving rec-
ommended treatments, and also receiving new treat-
ments; to do this, we will include in the model
estimates of treatment effects, where possible based
on the results of randomised trials.
The NPI was the first breast cancer prognostic

model published [1], has had the most extensive val-
idation [2], and is still widely used. It does not pre-
dict survival for each patient, but divides patients into
prognostic groups, usually three groups. It is based
on three factors incorporated in the NZ model and
so the two indices are related. We have shown here
that the NPI is only very approximate, there being
wide variations in survival within each NPI prognostic
group. We have demonstrated that within each NPI
group the NZ model subdivides patients into smaller
groups efficiently, with good correlation between pre-
dicted and observed ten-year breast cancer specific
survival rates. The NZ model could replace the NPI
in those situations were the NPI is being used.
We will do further work to compare our model’s

performance with that of other available models, de-
veloped in other countries. We will also assess other
potential predictive factors and their effects on the
performance of our model. These will include treat-
ments, and comorbidity to account for associated
health conditions of breast cancer patients. We will
also assess other outcomes of breast cancer, such as
overall mortality, local recurrence rate, and recurrence
rate.

Conclusions
We have developed a NZ specific predictive model,
which has good validity to predict breast cancer mortal-
ity in women with primary invasive breast cancer in NZ.
The model is clearly superior to the widely used NPI,
and categorises patients by predicted survival even
within categories of the NPI. The NZ model shows po-
tential to have important clinical value.

Additional file

Additional file 1: Table S1. 10-year breast cancer predicted and ob-
served survival, Auckland and Waikato databases. (DOCX 14 kb)
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