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Abstract
Accurate prediction of breast cancer-specific survival is crucial for guiding personalized treatment
decisions and improving patient outcomes. This study evaluated the performance of machine learning
approaches (Random Survival Forest, RSF and Generalized Boosted Model, GBM) alongside traditional
Cox proportional hazards models for predicting survival in 21,574 women diagnosed with stage I-IV
breast cancer in New Zealand between 2000-2019. Performance comparisons using time-dependent
Area Under the Curve and Brier score metrics demonstrated that RSF consistently outperformed both
Cox regression variants and GBM across all time points. Distinct differences emerged in survival
predictions between modelling approaches: RSF captured a sharper initial decline in survival for most
tumour receptor subtypes and better differentiated the favourable prognosis of ER+/HER2- tumours
compared to other subtypes. Notably, variable importance analysis revealed fundamentally different
prognostic emphases between modelling approaches—disease stage dominated Cox model predictions
while tumour receptor subtype most strongly influenced RSF predictions. These findings highlight how
machine learning approaches can capture complex, nonlinear relationships between clinical variables
and survival outcomes that may be missed by traditional statistical models. The complementary insights
provided by different modelling approaches suggest potential value in their combined use for enhanced
risk stratification and more tailored treatment planning in breast cancer management, particularly when
accounting for tumour biological characteristics alongside conventional staging factors.

Introduction
Breast cancer remains a global health priority, with one of the highest incidence and mortality rates
among cancers affecting women (Amato 2023, Newman 2023). In New Zealand (NZ), breast cancer
incidence is particularly high, with one in nine women receiving a diagnosis in their lifetime and
significant disparities in outcomes persisting, especially among Māori and Pacific women (Te Aho o Te
Kahu 2020, Kim 2025). While the average five-year survival rates in NZ have improved to 91%, there
remains a pressing need to deepen our understanding of the factors influencing long-term survival and
recurrence (Gautier 2022). Addressing this knowledge gap could drive more precise risk models and
guide personalized follow-up and intervention strategies.

Traditionally, the Cox proportional hazards regression model has been instrumental in survival analysis,
including in breast cancer research, by estimating hazard ratios (HRs) and highlighting risk factors
(Lawrenson 2016, Elwood 2018). However, the Cox proportional hazards model relies on predefined
predictor variables, which may constrain the discovery of complex, time-varying relationships. Machine
learning (ML) approaches, particularly Random Survival Forests (RSF), offer an adaptable, data-driven
alternative, by dynamically identifying important features and patterns within high-dimensional data. By
allowing the data itself to determine critical prognostic factors, ML can identify interactions and
nonlinear associations that may otherwise remain hidden (Cygu 2023, Mihaylov 2019).
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Unlike traditional parametric models, ML approaches like RSF can flexibly handle nonlinear relationships,
high-dimensional data, and variable interactions, making fewer assumptions about the data structure.
For example, RSF techniques do not rely on a fixed baseline hazard, allowing for variable effects over
time without requiring the proportional hazards assumption inherent to the Cox model (Xu 2022, Alafchi
2019). This flexibility is especially valuable when exploring nuanced relationships, such as those
between receptor subtype and survival, that may not conform to proportional hazards.

In addition, ML methods like RSF incorporate automatic variable selection, reducing the manual effort
required to select predictors. They often handle missing data more effectively than traditional methods,
often employing ensemble techniques that enable predictions even when some data points are
incomplete.

In this study, we chose not to employ extensions of the Cox proportional hazards model, such as those
incorporating time-varying effects, due to the stringent assumptions required and their potential to limit
applicability in long-term survival analysis (Bellera et al., 2010). Instead, we utilize RSF as an exemplar
machine learning approach to explore survival and recurrence patterns among breast cancer patients in
NZ. RSF serves as a complementary method, offering insights into complex prognostic factors while
highlighting patterns not readily captured by traditional approaches. By leveraging both traditional
statistical models and modern machine learning methods, this work provides a more comprehensive
understanding of cancer outcomes and establishes a foundation for future advancements in
personalized breast cancer care.

Results

Clinicopathological characteristics
Data for this study was sourced from Te Rēhita Mate Ūtaetae (Breast Cancer Foundation NZ National
Register, subsequently referred to as Te Rēhita). Of 26,463 women diagnosed with stage 1–4 breast
cancers in NZ between 2000 and 2019, 4,889 had missing information so were omitted (Fig. 1). This
resulted in a study cohort of 21,574 women.

The majority of women were 45–69 years when their invasive breast cancer was diagnosed, were
European, had ER+/HER2- tumour receptor subtype, had grade 2 tumours and early stage (1–2) disease
(Table 1). Slightly more women had breast cancer detected after presenting with symptoms (approx.
55%) than through breast screening. Approximately half of these women underwent breast-conserving
surgery (BCS), while the other half had a mastectomy. The majority (65%) also received adjuvant
radiotherapy (Table 1). When analysed by tumour subtype, ER+/HER2- tumours were predominantly low-
grade, whereas triple-negative tumours were predominantly high-grade. A higher proportion of women
with ER+/HER2- breast tumours were over 44 years old and had their cancer diagnosed through
screening (Table 1). These distinct differences in clinical and pathological features across receptor
subtypes, which are already integral to clinical decision-making and treatment planning, highlight the
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need for accurate, subtype-specific survival prediction models to further refine personalised clinical
decision-making and treatment.
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Table 1
Clinicopathological characteristics of the study cohort. A total of n = 21,574 women with invasive breast

cancer and diagnosed between 2000–2019 were included in this study. Columns represent specific
tumour receptor subtypes, which influence clinical decision making, and cohort characteristics are

presented in rows.

  Receptor Subtype  

  ER+/HER2- ER+/HER2+ ER-/HER2+ Triple
Negative

Overall

  (n = 16,177) (n = 2,182) (n = 1,087) (n = 2,128) (n = 
21,574)

Age at Diagnosis
(years)

         

Mean (SD) 58.5 (12.3) 54.5 (13.1) 54.9 (13.0) 57.2 (14.1) 57.8 (12.7)

Median [Min, Max] 58.0 [20.0,
97.0]

53.0 [21.0,
94.0]

54.0 [22.0,
96.0]

57.0 [20.0,
98.0]

57.0 [20.0,
98.0]

Age at Diagnosis
group (years)

         

45–69 11,405
(70.5%)

1,396
(64.0%)

702 (64.6%) 1,276
(60.0%)

14,779
(68.5%)

≤ 44 1,863
(11.5%)

507 (23.2%) 237 (21.8%) 433
(20.3%)

3,040
(14.1%)

≥ 70 2,909
(18.0%)

279 (12.8%) 148 (13.6%) 419
(19.7%)

3,755
(17.4%)

Ethnicity          

European 12,026
(74.3%)

1,521
(69.7%)

714 (65.7%) 1,656
(77.8%)

15,917
(73.8%)

Māori 1,582 (9.8%) 237 (10.9%) 117 (10.8%) 158 (7.4%) 2,094
(9.7%)

Pacific Peoples 908 (5.6%) 177 (8.1%) 124 (11.4%) 82 (3.9%) 1,291
(6.0%)

Asian 1,390 (8.6%) 204 (9.3%) 104 (9.6%) 185 (8.7%) 1,883
(8.7%)

Other/Unknown 271 (1.7%) 43 (2.0%) 28 (2.6%) 47 (2.2%) 389 (1.8%)

Detection Method          

Screened 8,016
(49.6%)

795 (36.4%) 322 (29.6%) 594
(27.9%)

9,727
(45.1%)

Not Screened 8,161
(50.4%)

1,387
(63.6%)

765 (70.4%) 1,534
(72.1%)

11,847
(54.9%)
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  Receptor Subtype  

  ER+/HER2- ER+/HER2+ ER-/HER2+ Triple
Negative

Overall

Tumour Grade          

1 4,657
(28.8%)

106 (4.9%) 12 (1.1%) 35 (1.6%) 4,810
(22.3%)

2 8,621
(53.3%)

980 (44.9%) 233 (21.4%) 383
(18.0%)

10,217
(47.4%)

3 2,899
(17.9%)

1,096
(50.2%)

842 (77.5%) 1,710
(80.4%)

6,547
(30.3%)

Disease Stage (AJCC
7)

         

1 9,868
(61.0%)

1,076
(49.3%)

466 (42.9%) 960
(45.1%)

12,370
(57.3%)

2 5,115
(31.6%)

827 (37.9%) 450 (41.4%) 944
(44.4%)

7,336
(34.0%)

3 877 (5.4%) 165 (7.6%) 89 (8.2%) 127 (6.0%) 1,258
(5.8%)

4 317 (2.0%) 114 (5.2%) 82 (7.5%) 97 (4.6%) 610 (2.8%)

Adjuvant
Radiotherapy

         

No 5,565
(34.4%)

763 (35.0%) 427 (39.3%) 749
(35.2%)

7,504
(34.8%)

Yes 10,612
(65.6%)

1,419
(65.0%)

660 (60.7%) 1,379
(64.8%)

14,070
(65.2%)

Surgery Type          

BCS 8,772
(54.2%)

853 (39.1%) 302 (27.8%) 980
(46.1%)

10,907
(50.6%)

Mastectomy 7,405
(45.8%)

1,329
(60.9%)

785 (72.2%) 1,148
(53.9%)

10,667
(49.4%)

Diagnosis Year
Cluster

         

2000–2004 853 (5.3%) 187 (8.6%) 139 (12.8%) 261
(12.3%)

1,440
(6.7%)

2005–2008 2,261
(14.0%)

298 (13.7%) 231 (21.3%) 414
(19.5%)

3,204
(14.9%)

2009–2019 13,063 1,697 717 (66.0%) 1,453 16,930
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  Receptor Subtype  

  ER+/HER2- ER+/HER2+ ER-/HER2+ Triple
Negative

Overall

(80.8%) (77.8%) (68.3%) (78.5%)

Machine learning model performance
To address this need, accurate survival models can increase our understanding of factors that affect
breast cancer outcomes, inform treatment decision-making, and enable the stratification of patients into
different risk groups, which is essential for personalised medicine. In order to generate an accurate and
useful model, both machine learning and traditional models were explored for each receptor subtype.
The survival prediction curves generated by the RSF model were contrasted with those generated by
traditional adjusted CPH model, revealing notable differences in the shapes of the survival curves
(Fig. 2). The RSF model predicted a sharper initial decline in survival across all except ER+/HER2- tumour
receptor subtype, compared to the more gradual decline shown by the adjusted Kaplan-Meier (KM)
curves. The RSF model predicted comparatively better survival for women with ER+/HER2- breast
cancers relative to other receptor subtypes, whereas the curves for the adjusted KM are more
condensed, potentially obscuring these distinctions.

Next, the time-dependent survival prediction performance was evaluated via AUC and Brier score for five
different models (see methods). A high AUC and low Brier score is indicative of a better performing
model, or closer survival prediction to the true values. This analysis showed that RSF was the optimal
model for survival prediction across all time points (Fig. 3). The other models analysed had similar
survival prediction performance.

Since the different Cox proportional hazards models studied had roughly equivalent prediction accuracy,
for simplicity, this study proceeded with the simplest Cox model as the main comparison model
representing a traditional tool. The Cox model with interactions and regularised Cox model were not
explored further in this study. The traditional model CPH and RSF were then compared to evaluate the
risk factors associated with breast cancer-specific survival (BCSS). To further understand the factors
driving these predictions, the influential predictors identified through both models were analysed.

Influential predictors identified through traditional Cox regression and
RSF models
The RSF model (which demonstrated the most accurate survival predictions) and the Cox proportional
hazards model were analysed to uncover their underlying mechanisms and identify the key variables
influencing their predictions. In the Cox proportional hazards model, worse BCSS was significantly
associated with diagnosis from age 70, diagnosis after presenting with symptoms (i.e. not through
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breast screening), having triple negative receptor subtype, higher tumour grade and disease stage, and
requiring a mastectomy instead of BCS (Table 2). In contrast, Asian women, and those with the
ER+/HER2 + receptor subtype were associated with improved BCSS compared to other ethnicities and
tumour subtypes, respectively (Table 2).
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Table 2
Cox proportional hazards model. Hazard ratios for breast cancer-specific survival

are presented for each covariable, with 95% confidence intervals (CI) in
parentheses.

    Hazard Ratio (95% CI) P value

Age at diagnosis (years) 45–69 Reference  

  ≤ 44 0.96 (0.86–1.07) 0.42

  ≥ 70 1.41 (1.26–1.57) 0.00

Ethnicity European Reference  

  Māori 1.13 (0.99–1.29) 0.07

  Pacific Peoples 0.98 (0.83–1.14) 0.76

  Asian 0.6 (0.5–0.71) 0.00

  Other/Unknown 1.38 (1.08–1.75) 0.01

Detection method Screened Reference  

  Not Screened 1.52 (1.35–1.71) 0.00

Receptor Subtype ER+/HER2- Reference  

  ER+/HER2+ 0.87 (0.76–0.99) 0.04

  ER-/HER2+ 1.11 (0.96–1.3) 0.16

  Triple Negative 1.48 (1.31–1.66) 0.00

Tumour Grade 1 Reference  

  2 2.48 (2.05–3.01) 0.00

  3 4 (3.27–4.88) 0.00

Disease stage 1 Reference  

  2 2.26 (2.02–2.52) 0.00

  3 4.17 (3.57–4.87) 0.00

  4 11.33 (9.77–13.15) 0.00

Radiotherapy No Reference  

  Yes 0.97 (0.88–1.06) 0.47

Most invasive surgery BCS Reference  

  Mastectomy 1.45 (1.3–1.62) 0.00
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    Hazard Ratio (95% CI) P value

Diagnosis year cluster 2000–2004 Reference  

  2005–2008 0.72 (0.63–0.82) 0.00

  2009–2019 0.47 (0.42–0.53) 0.00

While the Cox proportional hazards model generates hazards ratios which can be used to assess the
impact of variables of survival, RSF model does not, although it does provide a measure “variable
importance”. RSF variable importance is different from statistical model coefficients, however, it
provides a metric for comparison and an alternative tool when assessing which variables influence
survival and survival prediction. This analysis showed that stage, grade, receptor subtype and surgery
type were the four most influential risk factors in the RSF model, when considering permutation variable
importance (Fig. 4A). These results were consistent with the statistically significant coefficients
observed in the Cox proportional hazards model. Ethnicity was the next most important variable, which
also demonstrated statistical significance in the Cox proportional hazards model.

Having identified the key predictors in each model, the next step was to explore how these variables
contribute to the models' overall predictive performance. To achieve this, Brier score loss was compared
after variable permutation. This analysis revealed that disease stage was the most important variable for
the performance of the Cox proportional hazards model, whereas tumour receptor subtype was the most
important variable for the performance of the RSF survival prediction model (Fig. 4B and C).

Discussion
This study demonstrates the utility of machine learning methods, particularly Random Survival Forests
(RSF), in analysing BCSS alongside traditional statistical approaches such as Cox proportional hazards
model. Our findings indicate that the RSF model provided the most accurate survival predictions across
all time points, outperforming traditional models in this dataset. While RSF does not yield the familiar
hazard ratios (HRs) associated with Cox proportional hazards model, it offers alternative metrics such
as variable importance and Brier score loss after permutations to identify influential predictors of
survival.

Analysis of the importance of the individual variables in the RSF model largely aligned with the
significant HRs identified by the Cox model. Both models highlighted disease stage, tumour grade,
receptor subtype, and surgery type as key predictors of BCSS. Notably, in the RSF model, receptor
subtype emerged as the most influential predictor, contrasting with the Cox model where disease stage
held the greatest influence. This difference highlights the potential of RSF to capture the complex,
nonlinear relationships between receptor subtype and survival outcomes, which may be less apparent in
traditional Cox regression analysis. This enhanced ability to detect intricate patterns underscores the
potential of machine learning methods to uncover nuanced prognostic factors. This finding has
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important implications for personalised medicine in breast cancer. While disease stage remains a
critical factor in treatment decisions, the RSF model's emphasis on receptor subtype provides a
complementary perspective. By accurately predicting survival based on subtype-specific factors, this
model could lead to more tailored treatment decisions, particularly within specific disease stages. For
instance, the model may identify specific subtypes with particularly favourable or unfavourable
prognoses within a given stage, allowing for more informed treatment selection or closer surveillance.
Overall, the RSF model's emphasis on receptor subtype, in contrast to the Cox model's focus on disease
stage, highlights its potential to enhance prognostication and treatment decision-making in breast
cancer, ultimately leading to improved patient outcomes.

An interesting observation from this study was that the performance of survival prediction for all models
decreased as time from diagnosis increased, indicated by declining AUC and increasing Brier scores.
Importantly, diagnosis year cluster was included in these models, which adjusts for some of the
expected change over time, such as changes in treatment method. This trend may reflect model
underfitting due to limited long-term data (11% of women in this cohort had follow-up times of 15 years
or greater) or fewer events (deaths) occurring at extended follow-up times. However, performance
metrics appeared to stabilize or even improve approaching the 20-year follow-up mark. This could
suggest that the models are better at predicting long-term survivors, possibly due to distinct
characteristics among women who survive beyond 20 years after diagnosis (1% of women in this
cohort). These survivors may have unique clinical or biological features that are more readily captured by
the models at extended time points. This pattern may also be influenced by survivorship bias, meaning
the individuals who remain in the cohort at extended time points could represent a selective group with
inherently better prognostic factors, potentially inflating model performance at those longer time points.

The strengths and limitations of both traditional and machine learning methods are evident in this study.
Traditional methods like Cox proportional hazards model rely on strong assumptions about the data,
such as the proportional hazards assumption, which can be violated in long-term survival data (Kurt
Omurlu et al., 2009; Wang & Li, 2017). In contrast, machine learning models like RSF can model complex
nonlinear relationships and interactions between covariates without stringent assumptions, providing
flexibility in handling diverse data structures. This flexibility is demonstrated in our findings, where RSF
consistently outperformed traditional models in prediction accuracy across all time points (Fig. 3).
However, increased model complexity can reduce interpretability. In this study we began to explore the
underlying mechanism of how the models generated their predictions (Fig. 4). Future studies could
include techniques like Local Interpretable Model-Agnostic Explanations and Shapley Additive
Explanation values that can explore the influence of variables in complex models even further (Alabi et
al., 2023; Lundberg & Lee, 2017; Moncada-Torres et al., 2021).

Machine learning models also handle missing data more effectively and can produce predictions even
with incomplete data through ensemble methods and the use of weak learners (Fanizzi et al., 2023;
Steele et al., 2018). Women with missing data were excluded from this study (with the exception of
ethnicity) to ensure comparability with the Cox proportional hazards model, which requires complete
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Methods

Ethics

datasets. Future studies could consider retaining these records to prevent information loss and explore
statistical methods such as multiple imputation or other machine learning approaches for missing data.

Our findings align with previous studies comparing traditional and machine learning methods for survival
analysis. Spooner et al. (2020) found similar performance across various machine learning algorithms
and traditional Cox proportional hazards model, depending on whether model assumptions are met and
the complexity of covariate relationships. In cases where the assumptions are violated or relationships
are more complex, machine learning models may outperform traditional methods. Even when traditional
model assumptions hold, the ability of machine learning models to detect more complex relationships
provides an opportunity to enhance traditional models by identifying additional variables or interactions
to include. Our study found better survival prediction performance for RSF compared to Cox proportional
hazards, which aligns with the findings from Jia et al. (2025), although their study cohort included only
inflammatory breast cancer patients. Studies exploring breast cancer survival or recurrence as a binary
analysis (ignoring censoring) are common (Hamedi et al., 2024; Kamble et al., 2025; Noman et al., 2025).
Noman et al. (2025) nicely utilised a Cox proportional hazards model alongside other machine learning
models, however, this was to predict recurrence, whereas our study analysed BCSS, so we are unable to
compare results.

It is important to note that there is no universally 'best' model across all datasets (Manikandan et al.,
2023). The choice of model should be guided by the specific context, data characteristics, and research
objectives. While machine learning offers advantages in modelling complex relationships, traditional
models remain valuable, especially when their assumptions are appropriate for the data.

The utility and interpretation of survival prediction models should be approached cautiously, with
rigorous validation and calibration studies, and in conjunction with clinical expertise. Individual variability
among patients necessitates careful consideration when applying these models for personalized
prognostication. However, both traditional statistical models and machine learning methods are valuable
tools for exploring survival patterns and identifying influential predictors in patient populations.

Conclusion
This study underscores the potential of machine learning methods like RSF in enhancing survival
analysis for breast cancer patients. The RSF model's ability to capture complex relationships without
strict assumptions makes it a powerful complement to traditional methods. Key predictors such as
tumour receptor subtype and disease stage were identified as influential for BCSS, highlighting the need
for models that can accurately capture these complexities. Our findings advocate for the integration of
machine learning approaches in survival analysis to improve risk stratification and support the
development of personalised care strategies in breast cancer management.
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This study was conducted according to the guidelines of the Declaration of Helsinki and approved by the
Auckland Health Research Ethics Committee (AH2800). This study used data from Te Rēhita Mate
Ūtaetae- the Breast Cancer Foundation NZ National Register. Te Rēhita is an opt-out register, which
operates under the NZ Health and Disability Ethics Committee approval (16/NTA/139/AM03), privacy,
and health legislation and Treaty of Waitangi principles. Patients receive an information sheet explaining
that their de-identified data may be used for research purposes, subject to approval by Te Rēhita
governance group. Those who choose not to opt-out implicitly consent to their data being included in
this study.

Study cohort
This study analysed data from 26,463 women diagnosed with stage 1–4 breast cancers in NZ. A 2000-
to-2019-time span was selected to ensure a follow-up period of at least 3 years, and to mitigate bias
introduced by the inclusion of data from new regions in 2020. Patient follow-up within Te Rēhita was
confirmed as up to date as of the data extraction on March 2, 2023. BCSS was calculated from the date
of diagnosis to the date of death from breast cancer, if it occurred. Otherwise, survival time was
censored at the date of death from other causes or at the latest follow-up date within the study period.
Women in the study cohort had a median follow-up time of 8 years.

Predictors
This analysis incorporated several key patient factors as predictors, including age group at diagnosis,
detection method, ethnicity, surgical intervention, and radiotherapy. Age groups were categorized as < 45,
45–69, and ≥ 70 years to correspond with the eligibility criteria for New Zealand’s national breast
screening program, BreastScreen Aotearoa (BSA) (Breast Cancer Aotearoa Coalition, 2020) for women
aged 45–69 years. Detection method was recorded as invasive breast cancer detected by screening
mammography- “screened”, or detection after presentation with symptoms- “not screened”. Te Rēhita
collects up to three ethnicities per person, and sources these from New Zealand’s Ministry of Health
through an interactive link with each person’s unique health identifier (Gautier et al., 2022). Ethnicity was
recorded as prioritised ethnicity, level 1 per HISO 10001:2017 ethnicity data protocols (Wellington:
Ministry of Health, 2017), with Middle Eastern, Latin American, African (MELAA), “Other,” and missing
ethnicity information combined into an “Other/Unknown” category. The most invasive surgery performed
on each patient was recorded, ensuring that cases where a mastectomy followed an initial BCS were
accurately captured. Disease stage was assessed using the AJCC 7 TNM staging system to ensure
consistency in staging across the entire cohort. Year of diagnosis was grouped into intervals (2000–
2004, 2005–2008, and 2009–2019) based on the results of k-medians survival clustering from our
previous study (reference clustering paper).

Models
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In this analysis, we evaluated several models for survival prediction, including standard Cox regression,
regularized Cox regression, Cox regression with interactions, Random Survival Forests (RSF), and
Generalized Boosting Models (GBM).

The Cox proportional hazards model(Cox, 1972) is a semi-parametric model (Kalbfleisch & Schaubel,
2023), containing components of both parametric (known distribution of regression coefficients ) and
non-parametric (unknown baseline hazard function ). The Cox model takes the formula

where  is the hazard function at time  and  is the baseline hazard with  for all 
predictors. The hazard function is the conditional probability of a person experiencing an event at some
time point, for example breast cancer-specific death, given that the person has been event-free up until
that time. Hazard ratios can be calculated by taking the exponential of the coefficients , and
are measures of an instantaneous relative risk (Sashegyi & Ferry, 2017). Note that the log of the hazard
rate is a linear combination of covariates. The other assumption for the Cox model is that the effect of
covariates on the hazard function is proportional over time, since the exponent  does not
include time . That is, the difference in hazard for one group at one time point, maintains the same
proportion difference in hazard to other groups at any other time point (Bewick et al., 2004; Kuitunen et
al., 2021). In non-mathematical terms, the Cox model helps to quantify how each variable impacts the
person ‘s risk of experiencing the event.

Machine learning provides some additional useful tools to examine survival that do not share the same
rigorous statistical assumptions as those just described for Cox regression. Random Survival Forests
(RSF)(Ishwaran et al., 2008) are extensions of random forests (Breiman, 2001), ensemble tree methods
that combine and average the survival predictions from many decision trees (Breiman et al., 1984). RSFs
reduce estimation variance by using independent bootstrap sampling before constructing each tree, with
each split chosen from a random subset of the features rather than all features. In the context of survival
analysis, RSF extends this approach by using a splitting criterion optimized for survival differences, such
as the log-rank test, to construct each tree (Ishwaran et al., 2008). Each node within an RSF tree divides
the data to maximize survival contrast between groups, enabling the detection of complex, nonlinear
relationships among covariates. Unlike Cox regression, RSF does not produce hazard ratios but instead
provides aggregate survival predictions derived from many trees. To determine variable importance in
RSF, we used an out-of-bag (OOB) approach, where the OOB data — data not included in the bootstrap
sample — were permuted for each variable. Comparing prediction error before and after permutation
indicated each variable’s importance, with larger discrepancies in error signifying greater influence on
survival. Variables appearing higher in the tree structure influence more downstream nodes, and
therefore, permutations of high-importance variables typically result in larger prediction errors.

Generalised Boosted Models (GBM) works by consecutively building decision trees to predict the
residuals of the previous tree (Ridgeway, 2020), similar to Gradient Boosting (Chen & Guestrin, 2016).

β i

h0

h (t) = h0 (t) ∙ exp(β 1x1 + β 1x1+. . . +β pxp)

h (t) t h0 xi = 0 p

exp (β i)

exp (β ixi)

t
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Model implementation
Cox regression was implemented in R using survival::coxph(). Regularized Cox regression used
riskRegression::GLMnet(), with alpha values tuned over a grid from 0 to 1 in 0.1 increments, resulting in
an optimal alpha of 0, which effectively applied ridge regularization. Lambda was selected based on the
minimum prediction error using the default regularization path. By incorporating regularization, we
anticipated improved model generalizability and enhanced survival prediction accuracy on unseen test
data, as regularization mitigates overfitting. Additionally, a Cox model with interaction terms was
developed to account for the interaction between disease stage and ethnicity, which was found to be
significant during exploratory analysis.

RSF was tuned on all covariates from the multivariable model, along with the diagnosis year, using
randomForestSRC::tune.rfsrc. The optimal configuration was achieved with nodesize = 15 and mtry = 6.
Feature importance scores and their confidence intervals were computed using delete-d jackknife
procedures (randomForestSRC::subsample), while survival curves from RSF predictions were visualized
through ggRandomForests::gg_rfsrc().

The GBM model was fit in this study using gbm::gbm(), and employed 10-fold cross-validation over a
parameter grid to minimize the AUC for 5-year BCSS. Optimal GBM parameters were identified as n.tree 
= 300, interaction.depth = 3, and shrinkage = 0.1, with covariate influence on survival assessed through
relative variable importance scores.

To evaluate the survival prediction performance across models, we used the Area Under the Curve (AUC)
and Brier score at 5-year follow-up and time-dependent intervals. The riskRegression::Score() function,
which employs inverse probability of censoring weights (IPCW), was utilized for Brier score estimation.
AUC, which quantifies a model’s discriminatory power, reflects the probability that a randomly selected
positive instance (breast-cancer-specific death) is ranked higher than a negative one (survival) (Fawcett,
2006). Time-dependent AUC was calculated using the Blanche et al. method, a modification of the Uno
method (Uno et al., 2007), wherein each AUC point reflects the probability that a patient who died from
breast cancer had a higher predicted risk than a patient who survived (Wu & Li, 2018). Confidence
intervals for these metrics were generated through 10-fold cross-validation.

To enhance interpretability of the Cox regression and RSF models, we employed model-agnostic
explanations using the survex package (Spytek et al., 2023), which allowed for time-dependent
permutation-based feature importance. This approach provided insights into the dynamic influence of
covariates over time and facilitated a deeper understanding of variable impacts on survival prediction in
a model-agnostic context.
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Figures

Figure 1

Consort diagram showing the number of women excluded in each category. This study analysed breast
cancer-specific survival (BCSS) for women with invasive breast cancers (stage 1-4) diagnosed in the
years 2000-2019 (n=21,574 following exclusions).
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Figure 2

Proportion of women surviving with invasive breast cancers over time by receptor subtype. (A)  Adjusted
Kaplan-Meier curves using “direct” adjustment method and (B) predicted proportion of women surviving
using random survival forest (RSF) model. All curves were adjusted for patient age, tumour grade and
disease stage.
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Figure 3

Model performance for prediction of breast cancer-specific survival. Cox proportional hazards model,
Cox proportional hazards model with interaction terms between receptor subtype and grade and
between diagnosis year cluster and detection method, regularised Cox proportional hazards model
(ridge), Random Survival Forest (RSF) and Generalised Boosted Model (GBM) were evaluated for survival
prediction performance over time using measures (A) area under the curve (AUC) and (B) Brier score.
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Figure 4

Analysis of variable importance.  (A) Forest plot showing the most important variables associated with
predicting BCSS in the RSF model. Error bars represent 95% confidence intervals generated using 100
jack-knife subsamples. Model-agnostic explanations for (B) Cox proportional hazards and (C) RSF
models, showing permutation variable importance over time.


